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ABSTRACT

This paper analyzes the problem of tracking targets in

noisy conditions.

First a basic background is provided. That includes

general concepts from estimation theory and a specific

description of the Kalman filter and its use for treating

the various aspects of the target tracking problem.

Then progressively more difficult situations of target

tracking examples are simulated and the results are

analyzed and compared with the literature.
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I. INTRODUCTION

The tracking problem today is of great interest particu-

larly in the military area. The term "tracking" is considered

to be the processing of measurements obtained from a target

in orderto maintain an estimate of its current state. The

latter usually contains:

a. Kinematic components (position, velocity, acceleration,

etc.).

b. Other components (radidted strength of signal, spec-

tral characteristics, etc.).

c. Constant or slowly-varying parameters (propagation

velocity, coupling coefficients, etc.).

A track is a state trajectory estimated from a set of

measurements which are associated with the same target.

Measurements are noise-corrupted observations related

to the state of the target. For example a measurement can

be direct estimate of position, range, bearing, time differ-

ence of arrival, frequency of narrow band signal, or frequency

difference of arrival.

Many approaches have been developed for the solution of

the tracking problem. Many of them are very reliable and

work with satisfactory results. The problem however is

complicated, so there is always need for further improvement

of the tracking procedures.

14
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The complexity of the tracking problem is due to the

following main reasons:

a. Presence of countermeasures (evasive maneuvers, S

decoys, etc.).

b. Need of advanced information processing techniques ..-.

for manipulation of the numerous and complex data to p

be possible.

c. Uncertainty associated with the measurements related "'"

to the origin of the measurements, i.e., a measure-

ment may not have originated from the target of interest.

d. Inaccurate mea'surements because of random noise.

e. Random false alarms in the detection process. .

f. Clutter because of reflectors or radiators near the

target of interest.

g. Interfering targets.

The basic components of a tracking system are shown in

Figure 1.1.

The term "filter" is often applied to devices or systems I

which process incoming signals or other data in such a way

as to eliminate noise, to smooth signals, or to predict the

input signal from instant to instant. There is much litera- S

ture covering the theories of estimation, identification, .

modeling, prediction, etc. The design of such filters falls

in the domain of optimal filtering, which originated with

the work of Wiener [Ref. l and was extended by the work of

Kalman-Busy [Ref. 21 and others. It was only around 1970

105
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that the systematic treatment of tracking multiple targets

in the presence of false alarms using Kalman filtering

techniques has started with the work of (Ref. 31 and [Ref. 4].

It has been generally accepted that the Kalman filtering

technique is one of the most desirable of existing tracking

algorithms. The reason is that it is able to accept many

inputs (bearing, range, course, speed, doppler, etc.). The

inputs can be available from a variety of locations and

sensors. The Kalman filter then weights them properly with

respect to their errors and generates an estimate of target

position, course, and speed. It contains also information

within its structure sufficient to give the user or decision

maker a useful indicator of the estimate's quality.

The purpose of this paper is to describe the target

tracking problem under noisy conditions. The Kalman filter

is used as the basic tool to treat this problem. Some char-

acteristic problems are presented and solved.

In Chapter II some basic concepts and definitions are

provided from estimation theory. The contents of this chap-

ter form the theoretical background needed for the rest of

the chapters. It is assumed that the reader is familiar

with basic probability theory.

Chapter III contains a general description of the Kalman

filter (discrete and continuous) and the nonlinear case

where a linearization of target tracking problem takes place

for the application of Kalman filter to be possible (Extended

Kalman Filter).

17
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In Chapter IV, a brief analysis of the error covariance

matrix and the information contained in it has been made.

Also its use in setting error ellipsoids (confidence regions)

about an estimated target position has been described.

In Chapter V the maneuvering target problem is described

and one of the various existing approaches is analyzed,

named "The White Noise Model with Adjustable Level." The

same method is used later in Chapter VI, in a relative exam-

ple. Chapter VI contains three characteristic examples

covering the application of Kalman filter in some individual

cases of target tracking problems. Specifically the presented

examples are the following:

a. Linear target problem (measurements of target's posi-

tion available).

b. Non-linear target problem (measurements of target's

bearing available).

c. Linear maneuvering target's problem (measurements of

position available). The target maneuvers two times

with different acceleration each time.

The relative calculations are provided analytically

together with the corresponding computer programs. The

resulting plots are also provided with proper comments.

18
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II. SOME DEFINITIONS AND BASIC CONCEPTS
FROM ESTIMATION THEORY

The following definitions and concepts from probability

and estimation theory respectively are described in detail

in Reference 5 and Reference 6.

A. DEFINITIONS

1. Bayes' Rule for Random Variables

For random variables Bayes' rule is given by:

p(xy )  P(ylx)P(X) P(4x)P(x) (2.21=~y P(y) P(ylx)P(x)dx

The conditional probability of an event is sometimes referred

to as "posterior" while the unconditional one as "prior."

In this case p(x) is called the "prior" probability density

function (p.d.f.) and p(xly) is the posterior one.

2. Gaussian Random Variables

The p.d.f. of a Gaussian random variable is

p(x)= -2 = 1 e -(xx 2  (2.2)

p~x) N(x;x,a )-exp{- (2.2)V/2" 'o 2a 2-.::

where N( ) represents the normal density with argument x,

mean x and variance u.

An equivalent expression is

2x N(x,C2 ) (2.3)

19
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where x is normally distributed with respective mean and

variance.

3. White Noise

A discrete Gaussian random process v is called "white

noise" if for any k time points ti lt2 ,. . tk , the random

vectors v(t I) ,...,v(tk ) (which are Gaussian) are independent.

The autocorrelation of this random process is zero for any

two different times.

A discrete Gaussian random process is often used as

a model for measurement noise and disturbance noise.

4. Markov Processes

The common property of Markov processes is the

following:

p[x(t) jx(T) , T <t I  = ptx(t) lx(t1 )J V t > tI  (2.4)

i.e., the past up to t, is completely described by the value
of the process at t.

The state of a dynamic system with input a white noise

x(t) = f[x(t),n(t)] (2.5)

is a Markov process.

5. Random. Sequences

A random sequence, or a discrete time stochastic

process, is a time-indexed sequence of random variables.

20
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k

x {x(j), j = l,...,k} k = 1 . (2.6)

A random sequence is Markov if

p[x(k)Ix j  = p(x(k) x(j)] V k > j (2.7)
I

The sequence v(j), j = I,..., is a (discrete time)

white noise if
S

E[v(k)v(j)] = kj (2.8)

p
where 6k is the Kronecker delta function:

1 if k= j

-- (2.9) I

0if k j

The state of a dynamic system excited by white noise
I

x(k+l) = f[k,x(k) ,v(k) ] (2.10)

is a discrete-time Markov process or Markov sequence.

A stochastic process x(t), t E I is a Gaussian white

(or independent) process if for any m time points tl, ... tm

in I (m = integer), the m random n vectors X(tl),...*x(tm)

are independent Gaussian random vectors.

The state of a linear dynamic system excited by white

Gaussian noise

21
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x(k+l) = F x(k) + v(k) (2.11)

is a Gauss-Markov process.

B. BASIC CONCEPTS IN ESTIMATION

1. Estimating Problem--Random and Non-random Parameters

The problem of estimating a (time-invariant) parameter

x is:

Given the measurements

z(j) = h[j,x,w(j)] , j = 1,... (2.12)

made in the presence of random noises w(j), find a function

kx(k) x(k,z ) (2.13)

where

k lz(j), j 1,...,k} (2.14)

that estimates the value of x in some sense.

The function (2.13) is called an estimator and its

value is called the estimate. We can use two model's for a

time-invariant parameter:

a. Non-random: We have an unknown true value x0 . Here

it is desired that the estimates converge in some sense to

this true value as k - (non-Bayesian approach).

22
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1:

b. Random: The parameter is a random variable with a

prior p.d.f. p(x). In this case a realization of x accord-

ing to p(x) is assumed to have taken place; It is desired

for each measurement sequence to yield an estimate that

converges to the corresponding realization of x and this

should hold for all x (Bayesian approach).

In the second approach given the prior p.d.f. of the

parameter, its posterior can be obtained using the Bay's

rule.

In the first case the likelihood function

Ak (x) = p(Z kix) (2.15)

is used as a measure of how "likely" a parameter value is

for the observations that are made.

A usual method of estimation of non-random parameters

is the maximum likelihood method. Its maximum likelihood

estimate (MLE) is

~ML kx (k) = arg max p(Z Ix) (2.16)
x

The corresponding estimate for a random parameter is

the maximum a posteriori (MAP) estimate

MAP Zk k.
x (k) = arg max p(xjZ = arg max[p(z lx)p(x)] (2.17)

x x

23..................................................



MYAP ML

The x will coincide with x for a certain orlor

p.d.f., called "diffuse."

2. Linear Estimation--Static Case

The minimum mean square error (m.m.s.e.) estimate of a

random variable x in terms of another random variable y

is the conditional mean E[x'y]. In practice the evaluation

of the conditional mean is complicated so usually the "linear

m.m.s.e. estimation" method is applied. According to this

method the best estimate is such that it is unbiased and the

estimation error is uncorrelated from the observable(s),

i.e., they are orthogonal.

The estimation of two random vectors x and z jointly

normally (Gaussian) distributed is now examined:

Let

lx
= L~(2.18)

The random variable y is normally distributed with mean

Z = (2.19)

and covariance matrix (assumed nonsingular)

24

• °-% . ... '.-.



pX zP LZ(2.20)
E~zx z

where

P = E[(x -X) (x -x)' (2.21)-xx

and

P = E[(x -x) (z -z') (2.22)

Then the m.m.s.e. estimate of x in terms of z is

x = E[x!zI -x + P P (z- Z (2.23) -
_ _ x z -

and the correspondingcovariance matrix is

-"--".

z ~E[(x x) (x x)'z] P p P p (2.24)-_xx -xz zz -zx

We can see that the optimal estimate is a linear function of

z (this is because of the Gaussian assumption), while the -9

covariance which measures the "quality" of the estimate is

independent of the observation z.

If the random variables are not Gaussian, then the

"best linear" estimate of x in terms of z (lin. m.m.s.e.) .

is:

25
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=x + P  (z-Z) (2.25)-- -- --X Z -z -.

The m.s.e. matrix corresponding to Equation (2.25) is given

by

E __' = P _p P p = P (2.26'"
-xx -xz -zZ -ZX -xx z(2

From the above results it follows that the best estimator

(in the m.m.s.e. sense) for Gaussian random variables is the

same as the best linear estimator for arbitrarily distributed

random variables with the same first and second moments.

3. Estimating with the "Least Squares" Method

The least squares method is another common estimation

procedure for non-random parameters. For measurements

z(j) = h(j,x) + w(j) (2.27)

The least square estimate of x is

^LS k 2 °

x (k) = arg min [z(j) - h(j,x)] (2.28)
x j=l

Equation (2.28) does not make assumptions about the noises

w(j). If these noises are independent identical distributed

(i.i.d.) zero-mean Gaussian random variables, then Equation

(2.28) coincides with the MLE for these assumptions.
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The corresponding case for random parameters is the

minimum mean square error (m.m.s.e.) estimate -

1 MMSE (k) arg min E[(x -x) 2 Zk (2.29)

x

The solution to the above is

^MMSE k k
x (k) = E[x!Zk ] = f x p(xIZ) dx (2.30)

where the expectation is with respect to the conditional.

p.d.f.:

k kP(xZ k )k P(Z kx)P(x)(k )  (2.31)
P(Z

4. Consistent Estimators

For a non-random parameter case, the estimator is

called consistent if the estimate converges to the true

value in some stochastic sense. Using the convergence in

mean square,

^ 2
lim E{[x(k) - 0 1 (2.32)
kx }=

The expectation is

~-k
E[x(zk)] x0  (2.33)
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Requirement for the convergence of the estimator

in the random parameter case (m.s. sense) is

lrn E([x(k) -x) } 0 (2.34)
k -

The expectation here is over Z k and x.
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III. KALMAN FILTER AND APPLICATION TO TARGET TRACKING

A. BASICS ON KALMAN FILTER

Kalman filtering technique is very popular in target

tracking applications. It is basically a method of solving

the problems of optimal filtering and prediction, which

according to Reference 1 is defined as:

a. Optimal filtering is the estimation of state vector

X(t) from data Z(z) where < t.

b. Prediction is the estimation of a state vector'X(t)

at time t from data Z(r), where - < t.

In target tracking both the above problems are encoun-

tered. The Kalman filter is desirable because as an estima-

tion model it has the following features:

a. At time t, the filter generates an unbiased estimate

X(t) of the state vector X(t). That means that the

expected value of the estimate is the value of the L

state vector at time t.

b. The estimate is a minimum variance estimate (i.e., it

has the property that its error covariance is less

than or equal to that of any other linear unbiased

estimate).

c. The filter is recursive and it does not store past

data.
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d. The filter is linear which simplifies calculations

and lends itself to machine computations. Gelb [Ref.

3] discusses the above features.

B. DISCRETE KALMAN FILTER

Assuming that we are dealing with a discrete time system

of the form:

X(k+l) = ,(k+l,k) X(k) + '(k+l,k) u(k) + W(k)

Z(k) = C(k) X(k) + V(k) 3.2.

the following declaration must be done:

"'(j j)" is read as: "X hat of j given j," which means

that "The estimate of X at time j given measurements at

times up to and including time j."

Then there are eight main components that make up the

Kalman filter: -

a. X(k) is the state vector at time k, and X(k) is the

state vector estimate which is an unbiased minimum

variance estimate of the true state vector X(k) at

time k.

b. The error covariance matrix P(k) is a matrix repre-

senting the covariance of the difference between the

true state vector X(k) and the estimate X(k), and

can be expressed as:
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P(k) = E< (X(k) - X(k)) (X (k) X(k)) '( 3.3)

c. The transition matrix (k) is used in the calculation

of the state vector estimate at the present point, in

time (k+llk) , from the state vector estimate of a
I

past point in time (kk). It is also used in the calcu-

lation of the error covariance matrix at time (k-1 k,.

using the error covariance matrix at time (k k). -

I
d. The measurement vector Z(k), is the data sample or

observation taken at time k and its components are

linear combinations of the components of the state

vector X(k) which have been corrupted by uncorrelated

Gaussian noise V(k) whose mean is zero and has a

covariance matrix R(k).

e. The covariance matrix R(k) associated with the Gaussian

noise that corrupts the observation or measurement at

time k, must be provided by the user. It is the covari-
S

ance of a sensor measurement vector Z(k). For example

a range sensor may have a measurement variance of 60

yards. A measurement made with that sensor would have

a scalar value of 60 yards for R(k). As will be seen

later, it is important that the value of R(k) be

accurate as it affects the performance of the filter.

f. The conversion matrix C(k) describes the linear com-

binations of the components of the state vector X(k)
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which makes the components of the measurement vector

Z(k). The relationship between the measurement vector

Z(k), the conversion matrix C(k), and the Gaussian

noise V(k) is:

Z(k) = C(k) X(K) + V(k) (3.4)

g. The Kalman gain matrix G(k) is instrumental in minl-

mizing the difference between the estimate x.k and

the state vector X(k). G(k) is chosen to minimize

the trace of the estimate error covariance matrix

P(k) and is used to revise the estimate X(k) of the

state vector X(k) and the error covariance matrix P(k)

after the observation Z(k) has been made.

h. The last component to be discussed is the system

dynamics covariance matrix Q(k). The assumption of

the Kalman model is that the state vector X(t) exists

in a random environment that is Gaussian with zero

mean and covariance Q(k). The system dynamics covari-

ance matrix must be input by the user, and its

determination is important as it also affects the

performance of the filter.

The remainder of this subsection shows the relation-

ships between the algorithm. Two important points follow:

a. The transition matrix _(k), measurement noise covari-

ance matrix R(k), systems dynamics covariance matrix
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Q(k) and the conversion matrix C(k) may be different

for each point in time k.

b. The filter must be initialized by the user providing

the initial estimate X(k) and its associated estimate

error covariance matrix P(k). A poor initialization

will require more observations for the algorithm esti-

mate to converge near the value of the state vector.

A Kalman filter iteration can be divided into phases:

Prediction and Filtering.

During the prediction phase, the state vector esti-

mate X(k+llk) and its error covariance matrix P(k+l k) are

D updated from the previous value at time (k k) to the time

(k+lILk) when the current measurement Z(k) is observed.

During the same phase the system dynamics is introduced into

the algorithm. The covariance matrix Q(k) accounts for the

system dynamics (environment) from time (k) to (k+l;k).

The update is performed by multiplying the estimate X(kik)

and the error covariance matrix P(kjk) by the transition

matrix (k+l,k) as follows:

X(k+llk) = 0(k+l,k) X(klk) (3.5)

P(k+lIk) = c_(k+l,k) P(klk) '(k+l,k) + Q(k) (3.6)

If the system has an input u, the first of the above

equations is extended as follows:
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X(k+l k) = (k+l,k) X(k:k) + _(k+l,k) u(k) (3.7)

During the filtering phase, the estimate X(k.k) of

the state vector X(klk) and the error covariance matrix

P(kk) are revised, based onthe latest measurement Z(k)

observed at time k. To do this, the Kalman gain matrix

G(k) is first computed using the error covariance matrix

P(k~k-1) which was updated in the prediction phase. The

covariance matrix R(k) which is the covariance of the Gausslan

noise associated with the latest measurement Z(k) and the

conversion matrix C(k) are also associated with the latest

measurement. The sequence of computations during the filter-

ing phase is:

G(k) = P(kjk-l) C'(k) [C(k) P(klk-l)C'(k) + R(k)]-i (3.8)

X(klk) = X(klk-l) + G(k)[Z(k) - C(k) X(klk-l)] (3.9)

P(kjk) = [I - G(k)C(k)] P(klk-l) (3.10)

The measurement prediction covariance is

S(k+l) = C(k+l)P(k+llk)C'(k+l) + R(k+l) (3.11)

The innovation or measurement residual is

34
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_(k+l) z(k+l) - z(k+l k) (3.12)

An important property of the innovations is that

they are an orthogonal sequence, i.e., -

E[LkL] = (3.13)

where 3 is the Kronecker delta function.kj _ -

It must be noticed that, at every stage k, the entire S

past is summarized by the "sufficient statistic" x(k k) and

the associated covariance. The covariance equations are

independent of the measurements. The covariance equations

can thus be iterated forward off line.

Figure 3.1 shows a schematic of the Kalman filter

algorithm and relationships among the components described

above. Reference 7 provides a detailed discussion of Kalman

filtering and optimal estimation.

C. CONTINUOUS KALMAN FILTER

In order to go from a discrete to a continuous system

of the form:

X(t) =F(t) X(t) + B(t) W(t) (3.14)

Z(t) = C(t) X(t) + V(t) 3.15)
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where W,V are zero mean, uncorrelated, white noise processes

with covariance matrices Q and R respectively, we have to

consider the situation at the limit as t(k) - t(k-1) = 't - 0.

At this limit we have the following equivalences:

:D(k) I + F t 3.16)

Q(k) - B Q B' 't (3.17)

R(k) R/At k3.18)

0 R(k) = E(V(k) V'(k)) is a covariance matrix, while:

R(t) E(V(t) V' (T)) = R(t)6(t -T) (3.19)

is a spectral density matrix. The covariance matrix R(t) (t-

has infinite valued elements. To approximate the continuous

white noise process by the discrete white noise sequence,

the pulse lengths (At) may be shrinked and their amplitudes

may be increased, such that R(k) - R/At. In other words,

as At - 0, the discrete noise sequence tends to one of an

infinite valued pulse of zero duration, such that the area

under the "impulse" autocorrelation function is R(k)It,

equal to the area R under the continuous white noise impulse

autocorrelation function.

With the above expressions in mind, the procedure is to

write the proper difference equations and to observe their --
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behavior in the limit as Lt - 0. It is assumed that R is

non-singular, i.e., R exists.

Finally the continuous Kalman filter equations are sum-

marized as follows:

a. System Model

X(t) = F(t) X(t) + B(t) W(t), W(t) N( _,Q(t) 3.2--

b. Measurement Model

Z(t) = C(t) X(t) + V(t), V(t) N(0,R(t)) (3.21).

C. Initial Conditions

E[X(0)] = X , E[(X(O) -X 0 ) (X(O) -X 0 ) '] = P0  (3.22)

d. Assumptions

R (t) exists

e. State Estimate

X(t) = F(t) X(t) + G(t)[Z(t) -C(t)X(t)], X(O) = X (3.23)

f. Error Covariance Propagation

P(t) = F(t)P(t) + P(t)F'(t) + B(t)Q(t)B'(t) -G(t)R(t)G'(t) -

where P(0) P (3.24)
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g. Kalman Gain Matrix

G(t) P(t)C'(t)R (t) when E[W(t) V'(7)] = 0 3.25)

-1 [

G(t) = [P(t)C' (t) + B(t)J(t) ]R (t)

For more details, See Reference7, pp. 119-124.

D. EXTENDED KALMAN FILTER

In target tracking it is usually needed to estimate the

present target position, course and speed and to precd -

future target position based on the present estimate. The

Kalman filter works very well for target tracking since the

algorithm can provide an unbiased, minimum variance estimate

of the target's state based on varied observations (filter-

ing), predict future position using the prediction phase of

the filter and provide an indicator of the estimate error

through the estimate error covariance matrix.

Usually in practice, the state and/or measurement equa-

tions are not linear. Since the Kalman filter is applied to

linear cases, it is necessary to find a "method" to use it

in nonlinear estimation problems. One approach is to derive

an optimal filter for the nonlinear problem. Another approach

(more usual) is to linearize the problem and apply Kalman

filter theory to the linearized problem. The highlights of

the second method are presented in the following:
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The system and measurement equations are assumed to be

of the form:

Discrete

x(k+l) = a(x(k) ,u(k) ,k) + w(k) (3.27)

z(k) c(x(k)) + v(k) (3.28)

Continuous

x(t) f(x(t) ,u(t),t) + w(t) 3.29)

z(t) = h(x(t)) + v(t) (3.30)

Here it is assumed that we deal with a discrete model.

It is assumed that we have available a trajectory

(0)
x (k), k = 0,1,2,.... The vector function a(x(k),u(k),k)

is expanded in a Taylor series about the nominal trajectory

(0)
x (k). Then the linearized state equations can be written

as:

"x(k+l) = A(k) 2 k) + a(x (0 ) (k),u(k),k) - A(k) x (0 ) (k) + w(k)

(3.31)

where A(k) is defined to be the first partial derivatives

of the nonlinear function a(x (0 ) (k),u(k),k), with respect
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to the state vector x(k). i.e.,

A (k ) = . - (x (0 1  (3 .3 2 ) Sax- x (0 (k) ,u (k) k) 
. . .

The accuracy of this approximation depends on the differ-

ence between x ()(k) and the actual trajectory x(k). The

middle two terms are treated as deterministic inputs.

Now the measurement equation has been considered. We

have

z(k) = c(x(k)) + V(k) (3.33)

The nonlinear vector c is expanded again about the nominal

trajectory x (k). Then the measurement equation can be

written as

z(k) = H(k)x(k) + c(x ) k) - HCk)x ( k) + v(k) (3.34)

where H(k) is defined as the first partial derivatives of

the measurement function c(x ( 0 (k)) with respect to the

state vector X(k), i.e.,

H(k) = R (0) (3.35)
x (k)

As in the linearized state equation, the two middle terms

are known time-varying quantities which can be handled as if
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they were a time-varying me--surement bias. For simplifica-

tion it is defined

A(0) (0)
u'(k) a(x (k) ,u(k) ,k) -A(k)x (k) (3.36)

(0) (0)
z'(k) =z(k) -c(x (k)) + H(k)x (k))

=z(k) -b(k) 2'.37;

so that

x(k+l) =A(k)x(k) + u'(k) + w(k) (3.38)

z' (k) =H(k)x(k) + v(k) (3. 39)

With these linearized equations, the appropriate Kalman

filter equations are:

a. The gain equation _

G(k) =P(kjk-l)H'(k)[H(k)P(k~k-l)H'(k) + R(k)j' (3.40)

b. The covariance of estimation error equation

P(kjk-l) =A(k-1) P(k-llk-1) A'(k-l) + Q(k-1) (3.41)

P(klk) + (I -G(k)H(k)] P(klk-l) (3.42)
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c. Filter update equation

X(klk) = X(klk-l) + G(k) (z(k) - c(x(k k-l))] (3.43)

d. Prediction equation

x(k+lIk) = a(x(kjk),u(k),k) (3.44)

A block diagram of the system and estimator is shown in

Figure 3.2.

The gains can be pre-computed and stored if it is assumed

that the nominal trajectory is known in advance.

To answer the question, "where does the nominal trajectory

x(k) come from?", two approaches are usually used.

In the first, an approximate trajectory is used. This

trajectory is known in advance from known data or may have

been computer by solving the state equations

(0) (0)x (k+l) = a(x (k) ,u(k) ,k) (3.45)

with the initial condition x (0) (0) E[x(0)]. If the uncer-

tainty in X(O) is large, the solution of the above equation

may be "far" from x(k) to make the linearization sufficiently

accurate. If an accurate nominal trajectory is available,

the gain can be computed off-line and stored.

In the second approach, the estimates produced by the

filter are used as the nominal trajectory about which the _
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linearization is performed. The matrices A(k) and H(k) must

be used to generate G(k). The best trajectory information

available when H(k) must be evaluated is x(klk-l); when A(k) S

is to be evaluated, x(klk) is available.

The filter that results from using this approach is

called an Extended Kalman Filter. The gain and covariance .

equations must be solved on-line. The procedure of the

filter's calculations is given below:

1. Start with x(01-1) and evaluate H(O) using: S.

H(k) = (3.46)
(x(k k-l))

2.

P(01-l) = M = Et(x(0 -1) - x(0))(x(0 -1) -x(0)* 3.47)

Use this matrix to compute G(O) given by

G(k) = P(klk-l)H' (k) (H(k)P(klk-l)H' (k) + R(k) - 1  (3.48)

3. Compute x(010) from: •

X(klk) = x(klk-l) + G(k) [z(k) - c(x(klk-l)] (3.49)

or
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X(O 0) = x(0:-l) + G(O)[z(O) - c(x(O -1)) (3.50)

and x(l0) from:

X(k+lik) = a(x(kjk),u(k),k) (3.51)

4. Compute P(0'0) from:

P(k k) + [I - G(k) H(k)] P(k k-i) 3.52.

5. Since x(010) is available before A(O) is calculated,

the value of x(010) is used, hence:

ACO) -~A(3.53)

- (x(00),u(0),0)

and then P(1I 0 ) is computed from:

P(kjk-l) = A(k-l)P(k-lik-l)A' (k-i) + Q(k-1) (3.54)

The process is repeated by recycling through steps 1 to 5.

The Extended Kalman Filter presented was obtained by a

Taylor series expansion up to the first order terms. This

filter obviously introduces errors in the equations where the

higher order terms are neglected.

There are several ways of compensating for these errors.
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Very roughly , an addition of "artificial process

noise" covariance can be made, for compensation of the errors

is the state prediction. Also a multiplication of the state

covariance by a scalar I > 1 at every sampling time can be

carried out. This multiplication is equivalent to the filter

having a "fading memory," i.e., at every sampling time the

past data is "discounted" by attaching to it a higher covari-

ance (lower accuracy).

The above subject is covered with more details in Reference

8, pp. 4-52--4.58 and in Reference 5, pp. 3.3-1--3.4-1.
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IV. ERROR COVARIANCE MATRIX AND TARGET
TRACKING QUALITY

A. DEFINITION OF ERROR COVARIANCE MATRIX

The error x in the estimate of a state vector is defined

to be the difference between the estimated (x) and the

actual (x) values:

x = x- x .

The above difference is known as the error vector or

estimate error. The covariance of the estimate error is

P = E[(X(t) -X(t)(X(t) -X(t))'] (4.2)

It provides a statistical measure of the uncertainty in

x. It is possible to discuss the properties of the covari-

ance matrix independently of the mean value of the state.

The information contained is sufficient to generate indicators

of the estimate quality.

B. INFORMATION CONTAINED IN THE ERROR COVARIANCE MATRIX

There are five important characteristics of the error

covariance matrix which relate the matrix to the state

vector and its estimate.

(1) The error covariance matrix of an n-component state

vec..or is an n by n symmetric matrix.
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(2) The diagonal elements of the error covariance matrix

are the mean square errors of the-error vector

components.

(3) The trace of the error covariance matrix is the

mean square length of the error vector.

(4) The off-diagonal terms of the matrix are correlations 0

between the elements of the error vector X(t) - X(t).

(5) The error covariance matrix P(k) tends to the system

dynamics covariance matrix Qk), as k goes to

infinity. This means that as more information is

available about the state vector (observations) the

estimate uncertainty approaches the uncertainty of the

environment in which the state vector exists.

C. ERROR ELLIPSOIDS ABOUT A TARGET POSITION

Frequently it is significant to have available an indica-

tion of the quality of the estimates. One approach to

achieve this is the proper use of the error covariance

matrix P(klk). The outline of this approach is described

below.

It is assumed that the initial state of the model x(O)

and the random processes v(k), w(k) are Gaussian. If this

assumption is satisfied then it can be shown that:

.~.-..o

x(k),x(klk) and e(klk) = x(klk) - x(k)

are Gaussian. The results obtained apply only to this case.
4
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The probability density function for e(k k) can be

written as

fE(e(k k)I = / -e (k k)P (k k e k k-
n/2: ex2 12-(27) P(k k) / - -

4.3) .-

For a fixed time k this expression can be wrtten as

e n/2 1/2 exp- .,

(27) p

where w =p kk). In oider to determine the locus of

points where the density function fE (e), has a constant

value the above equation has to be examined. It is seen

that fE(e) has a constant value whenever

1 e' we constant 1 4.5)
2 -

It can be shown that the points e which satisfy Equation

(4.5) are hyperellipsoids (in two dimensions, ellipses).

If the left side of (4.5) is expanded for the two-dimensional

case (the same approach can be extended to n dimensions),

we have:

1 2 1 2 2 (4.6)Wl e I + w1 e I e 2 + w2 e 2  (4.6). ,.
w1 1 e1  w 1 2 e1 e2 + 2 2 e2
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where the symmetry of w has been used (w1 2  w2 1). Equation

(4.6) is an ellipse (w11 > 0, w22 > 0 and w1  w22 > w 2 )

It is not easy to be recognized as such because its principal

axes do not coincide with the coordinate axes as shown in-

Figure 4.1.

First the principal axes must be determined and then the

ellipse can be rewritten in terms of y and v as

coordinate axes.

E 2

1!

principa'i-

(2) p incipal -

Figure 4.1 Error Ellipse

51

.-...... • ... ,,,...... .,,..... ........*.,...



The ellipse in the new coordinate system is described by

2 2
2 2 1Yl Y2 12 (4.7)

2 1
\Il+ X2 Y2  1 /\"2 /" '.

(1) (2)where y and y are eigenvectors of w and and 2 are

the corresponding eigenvalues.

As it has already been mentioned, W = P . .uat o  4.-,

is an ellipse in terms of the eigenvalues 1 and 2 and
i)(2) ,-e

elgenvectors y and y of W. The expression which 3ves.

the ellipse in terms of the eigenvalues and eienvecors

of P is

2 2
1 + 2 12 (4.8)

a I  a 2  ".
2

where yji) is an eigenvector for P and a. = i/N. is the

corresponding eigenvalue.

This result can be generalized to n dimensions as well.

Given the quadratic form

-e 1 (4.9)

the eigenvalues of P are al,a 21 ...,a n and the corresponding

(1) (2) (n)
eigenvectors are y y(2) ,y .n The quadratic form

(Equation (4.9)) describes a hyperellipsoid which can be

written as
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2 2 2
Yl Y2 Yn 12
1 _ + + - (4.10)

a 1  a 2  an

All vectors e in the n-dimensional space can be written as a

linear combination of the eigenvectors y () (2)..v
(1) -

The coefficient of y in the linear combination is

the coefficient of y(2) is Y2, etc.

So the surfaces of equal probability density are

ellipses (or hyperellipsoids).

The problem can now be stated as follows:

For a specified value of k, what is the probability

e lies within or on the ellipsoid?

These probabilities have been tabulated below for a

few values of n and X.

TABLE I

Probabilities for Error Ellipsoids

n 1 2 3

1 .683 .955 .997

2 .394 .865 .989

3 .200 .739 .977

For example, for a system having n 2:

Probability error inside X = 1 ellipse 0.394

Probability error inside X = 2 ellipse 0.865
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Probability error inside ; = 3 ellipse = 0.989

Therefore, if the error covariance matrix P is given, the

error ellipsoids can be determined by finding the eigenvalues

and eigenvectors.

The error ellipses are useful in visualizing the estima-

tion error. By using them we can consider the true state

value to lie within a certain region surrounding the estimate.

For details and derivations, see Reference 8, pp. 4.44--

4.51.

54



* %~ - .,.-s fl ,-. . • , 4

V. MANEUVERING TARGETS

A. GENERAL DESCRIPTION OF THE PROBLEM

The maneuvering target is generally described by the

equation: .

x(k+l) F(k)x(k) + G(k)u(k) + v(k) (3.1)

where the matrices F(k), G(k) are assumed known and the

process noise v(k) is zero mean, white random sequence with

covariance matrix Q(k). The main characteristic of the ,

maneuvering target equation is that the inputs u(k) are

unknown.

In the following, linear models are examined for sim- .

plicity but the same techniques can be applied to nonlinear

cases.

A number of different approaches to the maneuvering target .

problem have appeared in the literature. The most commonly

used model is, due to simplicity requirements, a kinematic

model with states consisting of position, velocity, and in

most cases also acceleration, driven by white noise.

It is possible to divide the different approaches into

two broad categories: -I

A. The unknown input (maneuver command) is modeled as a

random process.

B. The unknown input is estimated in real time. O

55



The random process type models can be further classified

into two categories, depending on their statistical properties:

Al. White noise

A2. Autocorrelated (Markov) noise

All these methods are approximations because in general,

the maneuvers are not stochastic processes.

In the input estimation case the assumption of having a

constant input over a certain period of time is usually made.

The estimation can be based on the least squares criterion

and can be used in the following ways:

BI. The estimated input corrects the state estimate.

B2. The input becomes an extra state component (state

is augmented) that is reestimated within the state.

In the following section only one method is described.

This method is illustrated by an example in Chapter VI. It

was selected from the others, due to its simplicity.

For detailed descriptions of different approaches to the

problem, see Reference 5.

B. THE WHITE NOISE MODEL WITH ADJUSTABLE LEVEL

In this method a certain low level of process noise is

assumed in the filter.

A maneuver is considered as a large innovation. The

detection procedure is based on the square norm of the

innovations

"v(k) = V'(k)S (k)V(k) (5.2)
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where

V(k) = z(k) - z(klk-l) (5.3)

Based on the target model (for a non-maneuvering target)

a threshold is set up

Pt£v(k) < Fmax = 1 - a (5.4)

where a is arbitrary. For example, a = 0.05.

If the threshold is exceeded, Q(k-l) is multiplied by

a scaling factor until E is reduced to the threshold

max

When using the factor the covariance of the innovations

takes the form:

S(k) = C(k)[F(k-l)P(k-ljk-l)F'(k-l) + pQ(k-l)]C'(k) + R(k)

(5.5)

This obviously reduces the value of e (k).V

An analogous technique is possible to be used to lower

the process noise level after the maneuver.

L.
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VI. CHARACTERISTIC COMPUTER EXAMPLES

A. A LINEAR KALMAN FILTER EXAMPLE

1. Problem Description

The target is assumed to be described by the system: P

[l T] [ {

x(k+l) x(k) + w(k) k = 0, .... (6.1)

The available measurements are of the type:

L

z(k) = [I 0]x(k) + v(k) k 1,2,... (6.2)

where w(k) N(0,Q), v(k) N(0,R) are mutually independent,

zero mean, white random sequences.

The initial state is

x(0) = (6.3)

Two measurements zCO) and z(l) are made to initialize

a Kalman filter.

The sampling time is given as T = 0.1.

The process and measurement noise are to be yielded

by a Gaussian random number generator, given that Q = R = 0.02.
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Case 1

After the run of the Kalman filter for k = 2,...,100,

the following expressions are useful to be plotted:

a. True trajectory vs. estimated trajectory in the XlX

plane.

b. Position error variance

Pl(11 ) , Pl(2i l ) , Pll (2 :2 ) ,.

I

C. Normalized position error

[Xl(k) -xl(klk)]/[Pll(k~k)] 1 /  k = 2,...,100 .

d. Velocity error variance square

(x~k)-x~kj))'P (k)Exk) -xktk-

P22(lil), P22( 1) P22 2 2) . .. ,-..

e. Normalized velocity error

[x2 (k) -x 2 (klk ) ]/[P22(kjk) ]

f . Normalized state error squared j i-

Ix(k) -x(kik)]'P-l(k) [x(k) -x(klk)] i .

g. Normalized innovation error .-- '

[z(k) -z(kik-l)l/[pll(klk-l) + R]I / 2
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Case 2

In order to see the effect of running the Kalman

filter with a different Q than that of the model, it is helpful

to plot the same expressions as in Case 1, using a different

2
Q for the target's model, say Q = 9 xlO

Case 3

Finally, it is also interesting to see the change

on the same expressions as the Q of both the model and the

filter increases. For this reason new plots of these expres-
-2

sions are to be obtained, using Q = 9 10 for both the model

and the filter.

2. Analysis

a. True Trajectory

The matrix form of the given model is converted

in the following equations:

Xl(k+l) = Xl(k) + Txl(k) + Tw(k) (6.4)

x2 (k+l) = x2 (k) + w(k) (6.5)

where T = 0.1, w(k) is generated by a random number generator

function and

x(O) =
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b. Measurements

From the given measurement equation it is

obvious that B

z(k) x 1 (k) + v(k) (6.6)

where x(0)u= 5 and v(k) is generated by a random number

generator function.

c. Derivation of x(ll), p(ll) 0

It is reasonable to start with the following

estimations for the position and velocity vectors:

then

Xll 1)i(l ) + v(l) (6.8). '

xx2 1 (T -x + v(l) Tv() (6.9)

x2l~)T + T --.

Using these values in the initial erro."covariance

matrix

P(11l) E -1 2 (6.10)

x2( 1 = 1 1) 2 (11 ).92)1
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where

x C1I1) x (1il) x x(1;1) (6.12)

It is obtained that

P(11) (6.1--1LR 2R

pd. Run of the Kalman Filter

(1) Calculation of Gains. The known equation

of the Kalman Filter is:

*.P(kk-1) P *~(k-1 k-1) ~'+ Q' (k-i) (6.14)

It has been converted in matrix form and after some manipula-

tion, the following equations are obtained:

Eli (klk-1) P 1 1 (k1lk-1) + TP 2 1 (k-ilk-i)

+T (-k-) 2 2
-12 k-ik1 + T P 2 (kllk-1) + T Q(k)) (6.15)

p ~ 2 (kjk-l) P P2 (k-ijk-1) + TP22 (k-ijk-l) + TQ(k) (6.16)
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P2 2 (k:k-l) = P2 2 (k-lk-1) + Q(k) (6.18)

Keeping the same procedure, the Kalman Filter _

equation

G(k) = P(kk-1)C' [C P (k k-l)C' + R(k)] (6.19)

takes the following form

P (k i k-I)

GI(R) = Pll(kik-i) + R(k) (6.20)

P21(kik-l)
G (k) 21 (6.21)
2 P (k-k-1) + R(k)

Finally the equation

P(klk) = [I -G(k)C]P(klk-1) (6.22)

is analyzed in the following:

Eli(klk) = P1 1 (k k-l) -G 1 (k)P1 1 (kjk-l) (6.23)

P1 2 (kjk) P1 2(k k-i) -G 1 (k)P1 2 (kjk-l) (6.24)

P2 1 (k'k) = 22 1 (k k-k -G (k)P (klk-1) (6.25)

P2 2 (kjk) = P 2 2 (kik-l)-G 2 (k)Pl 2 (k k-1) (6.26)
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2. Estimated Trajectories

Following the procedure described above, the estimated

trajectories given by the equations:

x(k~k-1) = x(k-i~k-i) + u(k) (6.27)

x(k~k) =x(k~k-1) + G(k) [z(k) -C(k)x(k~k-l)I

take the form:

x (kik-l) x x(k-lik-1) + Tx2(k-i k-i) (6.29)

22(k k-1) =x(k-l~k-l) (6. 30)

jx(k k) G (k)z(k) +(1-G(k))x (klk-1) (6.31)

2(kik) x x(kjk-l) + G (k)z(k) G W2 kx (k~k-1) (6.32)

e. Normalized State Error Squared

The normalized state error squared is given by

the expression:

[x(k) -x(klk)]'P (k)[x~k) -x~kjk)]

By manipulating this expression in its matrix

form it is obtained that it is equal to the following:
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12 P 2
P PY2 -P2 P H~x1.k)-x (k'k)] + [x (k)-x (k'k)I

-2P 2 1 x 2 (Wx 1 (k)-x 2 Ck)x 1 (k! k) x 2 (kk)x 1(W

+ x (klk)x (k~k)j]

f. Normalized Innovation Error

By making use of the equation

z(kik-l) c cx(k k-1) (6. 33)

the given expression for the innovation error becomes

[z~k)z~kjkl)] -[z(k) -x (k~k-l)] 64

program (PP. 178-180) . The results corresponding to cases

1,2, and 3 are indicated on pages 66-89, respectively.

Some comments have been made on the computer program outputs

on pages 65 and 90-94.

3. Comments on the Graphs

a. Normalized Expressions c, e, g of Cases 1, 2, and 3

The normal distribution has p.d.f..

1 -22
f(x) = e ~.xx a(6.35)
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By standardize the normal distribution curve we

can have a single curve that may be adapted to all values of

the mean as well as differing values of the standard deviation.

This standardization may be accomplished by substituting

z = (x -x)/a in Equation (6.35).

The above concept is the case for the subpara-

graphs c, e, g. In Case c, for example,

z = [xl(k) -xl(kk)]/[P1 l(k k)]1/2

The standard normal distribution curve has a

mean of zero and variance and standard deviation equal to

one.

By integrating Equation (6.35) (after the substi-

tution of z), it is found that:

Between -la < z < +1, 68.2% of the area under the curve

is included.

Between -2a < z < +2a, 94.5% of the area under the curve

is included.

Between -3a < z < +3a, 99.74% of the area under the curve

is included.

With the above in mind, the probability that the

normalized position, velocity and innovation errors lie between

-2a is 94.5% (or between ±3a is 99.74%).

From the graphs it is seen that in the two

cases where the value of Q is common for the model and the
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filter, the three normalized errors lie 100% between
-3a.

In the case where Q is different between the model

and the filter it is seen that these errors exceed at some

points :3o. But generally it seems that the law of 99.74%

between :3a is applied satisfactory.

b. True Trajectory vs. Estimated Trajectory
(expr. a)

(1) Q = 0.02 for Model and Filter (pp. 66-67).

There is considerable difference between true and estimated

curve at the beginning but as time progresses, there is a

continuous improvement. Near the end, the two curves nearly

coincide.

(2) Q = 0.02 for the Filter and Q : 0.09 for

the Model (pp. 74-75). There is a significant difference

between true and estimated curve at the beginning which is

slightly improved at the end of the curves.

(3) Q = 0.09 for the Model and Filter (pp. 82-83).

Same as in (1), with the only difference that at the end of

the curves, the improvement is not nearly a coincidence but

it is better than that of Case (2).

Generally the rate of the improvement is

greater at small values of time because the gain is inversely

proportional to time (G(k) = 1/k+l) and it weights the correc-

tion term [z(k) - C(k)x(klk-l) less heavily as time progresses.

The fact that the improvement between true

and estimated curves is less in Case (3) than that of Case (1),
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was expected. The reason is that Q in Case (3) has a greater

value and as it is known, Q increases the uncertainty in the

one step prediction:

P(k~k-l) = , P(k-1 k-l)-' + Q 6.36)

This affects also the P(k k):

P(k'k) [I -G(k)c(k) ]P kk-1) 6

The fact that the estimated curve in Case

(2) differs from the true curve more than that of Cases (1)

and (3) and also that the improvement is not so significant

as in the other cases was also expected. The reason is that-

the Q's of the mode-and the filter are different, so this

difference affects the P and G of the filter negatively,

resulting in a difficulty in approaching the true trajectories.

c. Normalized State Error Squared Error (expr. f)

It is known from the theorythat (x -x) P-(x -x)

is the sum of the squares of n independent zero-mean, unity

variance Gaussian random variable, i.e., N(0,1). This means

that (x-x)'P- (x-x) has a chi-square distribution with n

degrees of freedom (n is the dimension of vector x).

2If the chi-square distribution (X2 ) equals zero,

the true and estimated state vectors agree exactly. The

2
larger the value of X the greater the discrepancy between

the true and estimated state vectors.
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What is expected to be seen in this problem is

a greater discrepancy in the case where the Q's of the model

and the filter are different, due to the poor estimations of

the state vectors.

The above expectation seems to be the case.

Specifically in the cases where the same Q for the filter •

and the model is used, it can be said roughly that the

025 and 975 are approximately 0.06 and 7.5 as they should ..-

be for two degrees of freedom (see proper tables).

d. Position and Velocity Error Variances (expr. bdi

In Cases 1 and 2 (filter has Q = 0.02), we have

identical position error variances and identical velocity

error variances. After some initial variations the position

error variance takes its steady state which is almost zero

(expected), while the velocity error variance takes also its-

steady state which is approximately 0.04.

In Case 3, the increase in Q, increases Pll(kk--

and reduces Pll(kjk) (see proper equations). Then the steady

state values of Pll(klk-l) and Pll(kjk) are different and . -

the result is that the position error variance oscillates

between the values 0.0 and 0.01. For the same reason the

velocity error oscillates between the values 0.15 and 0.24.

The mean values of both then are greater than the corresponding

values of Cases 1, 2. This is logical since now the Q is p

greater as it was derived:
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Position Error Variance:

P(kjk) P P~(kik-l) G G(k)P1 1 (kik-l) (6.38)

P1 1 (kik-1) P P11C(k-l~k-l) + TP 2 1 (klk)

+ TP 1 2 (k-Ilk-l) + T 2 P22 (k-lik-l) + T2Q (6.39)

Velocity Error Variance:

E2 k) =-G 2 (W)P1 2 (kk-l) +P 2 2 (k'k-l) (6.40) -

Z 2 (klk-1) P2 2 (k-l'k-l) +Q(6.41)

So Q is proportional to P 1and P 2

B. AN EXAMPLE USING E.K.F. (NON-LINEAR CASE)

1. Problem Description

A stationary target is located at x = 100.

Bearing measurements from a moving ship are taken at

k =1,... ,N from locations as indicated.

The following are given:

z(k) =8(k) + v(k) (6.42)

~() =tan k =1,...,N (6.43)-a~k)

Efv(k)I 0 (6.44)
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I~if

/ Target

/ 4)

// / , Bearings

p /

/ I .. Movina Ship

Figure 6.25 Descriptive Diagram for the Non-linear Problem

2,
E[v(k)v(j)] = , ,k (6.45

2 0 2
a(k) = 10k = (2 ) N = 12 (6.46)

The initial estimate is:

x (010) 80

x(010) A = (6.47)

x 2 (0 o) 120

II100 0

P(010) = (6.48)
... 0 100

Based on the bearings of the moving ship, an Extended

Kalman Filter can be used to improve the initial estimate

of the target's position.
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7K,7'Z7
It is useful to obtain the values of x(N N) and PIN N)

for observing the quality of the simulation.

2. Analysis

Since the target is stationary:

(k+l)1 7 x(k< 6.9

x (k+l) x (k)_

2- 2

The model equations for non-linear problems are:

x(k+l) =a(x(k),u(k),k) + w(k) (6.30)

z(k) =c(x(k)) + v(k) (6.531)

For this problem

a(x(k),u~k),k) = l 1(6.52)
x(k) .

so

2. x

A(k) = [x0 (6.53)
(Kx(klk)) ax2  a_ [0 1J

1 2

c(x(k)) for this problem is given by:
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c (x (k)) tan' (6.54)

so

H =(6. 55)
07 x (k) - X -1)

and

-X
2

H, 2 2 (6. 56)
(x-a (k)) + x2

-a(k)
H2  (6.57)

(x -a(k)) +x

To calculate the gains of the filter, the following

equation is used:

G (k) P P(klk-1) H'(k,

IH(k)P(klk-l)H'(k) + R(k)] 1  (6.58)

After some manipulations of the above equation in its matrix

form, it is found that the gains are given by the following

equations:

G1(k) = 2 ~ l (kjk-l)H1 (k)+P 1 (kjk-l)H2 (k)

H1 (k)P 11 (klk-l)+H 1 (k)H2 (k)( P21 (klk-l)+P12 (kjk-l)+H 2kWP 22 (klk-l)+R(k) I

(6.59)
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P (k k-l) H1 (k) +P22 (k k-l) H2 (k)
G (k) 2 2-

H1 (k)Pl (kik-l)+H1 (k)H2 (k) [P21 (kk-l)+Pl2 (k k-l)+H (k) P22 (k k-l) +R (k) "

(6. 60)

The estimation of the states is obtained by manipu-

lating the following equation:

x(k k) x(k'k-l) + G(k)[z(k) -c(x(k k-1))] k6.61)

The results are:

-1 x(k k-1)
1 2

X (klk) x (kjk-1) + Gl(k)z(k) - Gl(k)tan -a)Xl(k k-l) -a(k) -.

(6.62)

A x Ckk-l)
2

^x^-1 x2 (k k-l).2-+:
x2(klk) x2 (kik-l) + G2(k)z(k) G2 (k)tan ^x-kk.)-a.xI (klk-1) -a(k) -''

(6.63)

The error covariance matrix during the filtering phase

of the Kalman Filter is given by the equation:

P(klk) = [I G(k)H(k)]P(kjk-l) (6.64)

By manipulating this equation as it was described previously,

the following equations are obtained:
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P1 (k k) P P 1 k'k- 1) 1.-G (k) H (k)] -P2 Ckk-l)G (kH Wk

(6.65)

P p1 2 (k k) (1 [-G (k) H1 C(k)P 1 2 (kk-l)-G 1 (k) H2 (k) P2 2 (kk-1)

(6.66)

P P21 C(k;k) (1 [-G 2 (k) H2C(k)IP 21 (kik-1) -G 2 (k) H 1 (k) P1 1(k k-1)

6.67)

P2 2 (kik) =[1 -G 2()H 2(]P 2 2 (kIk-l) -G 2C)H 1CWP 1 2 (k k-i)

(6. 68)

The error covariance matrix during the prediction

phase of the Kalman Filter is given by the equation:

P(klk-l) =A(k-l)p(k-llk-l)A'(k-1) + Q(k-1) (6.69)

This yields the following results:

P 1 1 (klk-l) P P1 1 k-llk-1) (6.70)

P 1 2 (klk-1) P P12 (k-llk-1) (6.71)

P2 1 (kjk-1) P P2 (k-lik-1) (6.72)
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P 2 (k. k-1) =P (k-i k-1) (6.73)

22 22

The normalized state error squared:

[x(k) -x(klk)]'P (k)[x(k) -x(kk)]

is given by the same expression as in the previous problem.

All the above results are used in a computer program

(see Appendix A). This program basically follows the stecs

of an Extended Kalman Filter algorithm as it was described

in Chapter III.

From the outputs it can be seen that the position

variance on the horizontal axis is smaller than that on the

vertical axis. This was expected since the bearings are

crossed with relatively small angles and in this way, there

is a larger uncertainty on the vertical axis.

Also from the results, it can be seen that the esti-

mates for x1, x2, are improved as time goes on and finally,

that they are very close to the real values.

C. MANEUVERING TARGET EXAMPLE

1. Problem Description

The target is modeled by the following equation:

x(k+l) = F x(k) + G w(k) (6.74)
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This equation is discretized over time intervals of length

T. Using Cartesian coordinates, the state is:

x (x x y Y]' (6.73)

and

[1 T 0 0

10 1 0 0
F = 0 0 1 T (6.76)

0 0 0 1

W = w 1 6.77 p

FT/2 01
G =21(6. 78)

Elw(k)] =0; E[w(k) w'(j)] = (6.79)-k]

The initial estimate is x(010) with covariance P(00,).

It is assumed that only position measurements are

available:

z(k) =C x(k) + v(k) (6.80)

where
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II

C_ = (6.81)0 0 1 0. • , ..

E 0; E [v(k) v' (j)] = R (k6.82)

The following are given:

T ls Q = R RI = R22= 104m2 a
l•i, and-

2
R = 500m

The initial conditions of the target are:

x(O) = 20Or, x() = 0, y(O) = lO,O00m, y(O) = -15m' s.

The target is on a constant course and speed until

time t = 400s, when it maneuvers a slow 90* turn in the x

x y 2
direction with acceleration inputs u = u = O.075m/s . It

completes the turn at t = 600s (after 20 sampling times) and

from then on the accelerations are zero. The second turn,

also of 900, is fast. It starts at t = 610s with acceleration

2
of 0.3m/s and is completed at t = 660s, i.e., after 5

sampling times.

A simulation of the maneuvering target can be done

in x coordinate only (the results for the y coordinate are

similar), using the method of "White noise model with adjusta-

ble level."
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The quality of the performance of the target's simu-

lation can be observed from the following plots:

a. True and estimated trajectoris of the target.

b. Monte Carlo runs of position root mean square

error (r.m.s.e.):

50 (i2 1/2
5 I 1 (kk)]50i=l I

c. The same as b. for the velocity r.m.s. error.

2. Analysis

The target's movement is presented in Figure 6.26.

x2

A

-.

400

D

660

Figure 6.26 Movement of the Manuevering Target
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For treating this problem, a linear Kalman Filter

can be used. The only difference is that the actual trajec-

tory of the tarcet is now given by several formulas instead

of one. The different phases of movement of the target A,B,

C,D,E, can be formed in proper mathematical formulas, which

can feed the position measurements one after the other,

depending on the sampling time.

The initial estimates of the states in the x direct ....

were obtained as:

x(0 0) = X1 (0,0) z (0) (6.83 )

x(0I0) = x 2 (010) = [zl(0)-zI(-l)]/T (6.84--
2. 1

, - 4

where

zl(-l) = x( x) - (O)T + vl(-l) (6.85)

zl(0) = x(0) + vl(0) (6.86)

v - N(0,RII) (6.87)

The initial covariance matrix is then:

R R /T

P(0:0) (6.88)
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The rest of the calculations needed for developing

the Kalman Filter algorithm are very similar to those

developed in the first example.

If the maneuvers are not taken into account and the

filter runs as usual, the tracking results are very poor

during the maneuvers (see pp. 114-115)

Using the "White noise model with adjustable level"

method, a self-adjustment of the filter can be accomplished

as follows:

After the square norm of innovations:

Lv(k) = V'(k)S V(k) .

exceeds a chosen value, the target is considered as maneuver-

ing and a change (increase) in Q, is made. The increase

in Q increases the gain G, so the state estimation:

x(klk) = x(klk-l) + G(k)[z(k) -c(k)x(klk-l)] (6.89)

is more dependent on the second term since the state estimation

x(klk-l) is less reliable during the maneuver. The filter

continues its run with the new value of Q' until E has again

a lower value than that of the chosen threshold. Then the

filter runs again with the given initial value of Q (Q = 0.0).

After the addition of the above provision in the

tracking computer program, the results were much better than

those of the non-adjustable filter.
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Three categories of results were obtained. In each

one, different values of Q's and threshold levels were used.

The three categories are:

a. Observed and estimated trajectories versus sampling

time (50 Monte Carlo runs).

b. Observed and estimated trajectories versus sampling

time (single runs).

c. Mean square position error (50 Monte Carlo runs).

The above results (plots) can be seen on pp. i16-149.

A tabulation and qualification of these results has been

developed as follows:

Symbols

S: Constant course and speed

1M: First Maneuver

2M: Second maneuver

Very Good: The estimated trajectory follows the time trajectory
with great reliability (coincidence of the paths).

Good: The estimated trajectory is still very reliable,
i.e., follows the true path closely but they
don't coincide exactly.

F. Noise: The estimated trajectory follows the noise.

F. Noise E.: The estimated trajectory follows the noise
exactly.

Deviation: There is deviation between the true and estimated
trajectory.

S. Deviation: There is strong deviation between the true and

estimated trajectory.
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TABLE II

Observed and Estimated Trajectories

(50 Monte Carlo Runs)

THR.
Q 0.1 3 20

S Very Good Very Good Very Good

0.1 IM Deviation S. Deviation S. Deviation

2M S. Deviation S. Deviation S. Deviation

S Very Good Very Good Good

3 IM Good Deviation Deviation

2M Deviation Deviation Deviation P
-..

S Very Good Very Good Good

10 iM Very Good Good Deviation

2M Good Deviation Deviation

S Very Good Very Good Good

100 iM Very Good Good Deviation

2M Good Good Deviation

S Very Good Very Good Deviation
1

1000 IM Very Good Very Good Deviation--F. Noise

2M Very Good Good Deviation--F. Noise
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TABLE III

Observed and Estimated Trajectoris

(Single Runs)

THR.
Q 0.1 3 20

S Very Good Very Good Very Good

0.1 im Deviation S. Deviation s. Deviation

2M S. Deviation S. Deviation S. Devia:ion

S F. Noise Very Good Very Good

3 IM Good Good Deviation

2M Good Deviation Deviation

S F. Noise E. F. Noise Good

10 iM Good Good Deviation

2M Good Good Deviation

S F. Noise E. F. Noise Good

100 iM F. Noise E. Good Deviation--F. Noise

2M F. Noise E. F. Noise Deviation--F. Noise

S F. Noise E. F. Noise F. Noise

1000 iM F. Noise E. Good Deviation--F. Noise E.

2M F. Noise E. F. Noise Deviation--F. Noise E.
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Symbols

iMAX: Maximum value of m.s.e. during the first
maneuver

2MAX: Maximum value of m-s.e. during the second
maneuver

3MIN: Minimium value of m.s.e. during movement
under constant course and speed.

MAN: Maneuvers



TABLE IV

Root Mean Square Position Error (X Direction)

(50 Monte Carlo Runs)

THR.
Q0.1 3 20

1MAX 227 370 730

0.1 2,M1AX 257 300 370

3MIN 32 30 30

iMAX 82 147 455

4 2MAX 108 190 365

3MIN 48 37 30

1 MAX 84 130 425

10 2MAX 92 168 340-

3MIN 52 37 40

1MAX 102 107 375

100 2MAX 98 135 305

3MIN 64 46 30

1MAX 114 102 345

1000 2MAX 110 122 295

3MIN 72 51 30

1MAX 102

3000 2MAX 124

3MIN 52-

112
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TABLE V

Conclusions From Tables II, III, IV

TABLE 11 TABLE III TABLE IV

F. Noise r.m.s.e.
S Good

F. Noise E. increases
High Q

F. Noise r.rn.s.e.
MAN Very Good

F. Noise E. decreases

r.rn.s. e.

S Very Good Very Good
decreases

Low Q
Deviation r.tn.s.e.

MAN S. Deviation
S. Deviation increases

Very Good r.m.s.e.
S Deviation

Good decreases
High
Threshold Dvain rmse

MANaio Deviation
MAN eviaionS. Deviation increases

F. Noise r.m.s.e.
S Very Good

Low F. Noise E. increases

ThrshldGood r.m.s.e.

MAN Very Good
F. Noise decreases
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Since the observed and estimated paths in the Monte

Carlo case are averaged, the tracking results are better

(smoother) and it is not easy to observe the various affec-

tions of extreme values of Q and the threshold level. For

this reason, only three characteristic plots of this case

are presented and the following conclusions are based mainly

on the other two cases:

a. When the target is moving with constant course anr

speed, it is desirable to have low values of C and

high threshold level.

b. When the target is maneuvering, it is desirable tc

have medium or high values of Q and low threshold

level.

Based on the above results, an attempt was made to

run the filter using three levels of process noise Q (two

threshold levels). In this way the two types of maneuvers

(slow-fast) were treated separately. The threshold levels

chosen were 1 and 5. The mean square error of position and

velocity in the x direction over 50 Monte Carlo runs was

plotted. The results (pp. 152-171) were very good especially

for the position m.s.e. A tabulation of these results follows

as Table VI.
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TABLE VI

Multiple Process Noise Levels Results

R.M.S. Position Error R.M.S. Velocity Error

THR.

1-5 1-5

1MAX 112 13.2
0,0.1,100 2MAX 140 14

3MIN 35 0.4

1MAX 94 9.4
0,3,100 2MAX 124 13.6

3MIN 45 1.0

IMAX 88 9.6
0,10,100 2MAX 102 13.9

3MIN 50 1.4

1MAX 160 11.4
0,0.,10 2MAX 208 13.6

3MIN 35 0.4

1MAX 115 10
01,10 2MAX 168 13.2

3MIN 40 0.6

iMAX 96 10
0,3,10 2MAX 140 13.4

3MIN 44 0.8

IMAX 136 21.5
0,0.1,1000 2MAX 140 20.2

3MIN 37 0.25

IMAX 112 16
0,1,1000 2MAX 130 17.4

3MIN 44 0.7

IMAX 100 13.5
0,3,1000 2MAX 120 15.3

3MIN 46 1.0

IMAX 89 10.6
0,10,1000 2MAX 106 15

3MIN 50 1.3
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3. Comparison With Other Approaches

Bar-Shalom [Ref. 9], has developed a different approach

for the same problem. In this case the tracking filter

operates in its normal mode in the absence of any maneuver.

Once a maneuver is detected, a different state model is used

by the filter. The acceleration is added as a new state

component. The extent of the maneuver as detected, is then

used to yield an estimate for the extra state component,

and corrections are made on the other state components. The

tracking is then done with the augmented state model unt.I

it will be converted to the normal model by another decision.

The results of this approach can be seen in Figure

6.83. The curve having the indication "VD" belongs to the

above algorithm while the other curve (indication "IE")

belongs to a different approach developed by Chan [Ref. 10].

The outline of the latter algorithm is the following:

When a maneuver is detected, the magnitude of the

acceleration is identified in a least squares format. The

result is used in conjunction with a standard Kalman Filter

to estimate the state of the vehicle. The aim of the accelera-

tion input estimation is to remove the filter bias caused

by the target deviating from the assumed constant velocity,

straight line motion.

It can be easily see (Figure 6.83) that the algorithm

of Reference 9 is superior to that of Reference 10.

The "white noise model with adjustable level" method,

modified with multiple levels of process noise Q (one for

172
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each type of maneuver), can be compared with the algorithms

of References 9 and 10, Specifically this paper's algorithm

is better than both the algorithms in the r.m.s. position

error results and worse in the r.m.s. velocity error results.

In the r.m.s. velocity error case, the approximate maximum

value of the two other algorithms is 11, while this paper's

algorithm maximum value is 13.3 (not too big a difference.

In the r.m.s. position error case, the maximum values for -

References 9 and 10 algorithms are 200 and 125, respectivel-Y,

while this paper's algorithm has achieved an approximate

value of 95.
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VII. CONCLUSIONS

In the examples presented, it was seen that the Kalman

Filter has the ability and flexibility to treat various

cases of the target tracking problem with very satisfactory

results.

The Kalman Filter is always initialized by the user,

providing the initial estimate x(k) and its corresponding

estimate error covariance matrix P(k). The initialization

is of great importance for the filter's performance. A poor

initialization needs more observations and time for the p.

algorithm estimate to converge toward the value of the state

vector.

In all cases the importance of the gain matrix G(k) of

the Kalman Filter was significant, i.e., since it is inversely

proportional to time, it weights the correction term

[z(k) -x(klk-l)] less heavily as time progresses, and so the

state estimation x(klk) depends more on the state estimation

of past time x(klk-l).

It was also noted that the Q matrix accounts for any

model inaccuracies. For a filter in a steady state condition,

the Q also serves to prevent the gain matrix G(k) from

approaching zero by always insuring uncertainty in the pre-

dicted error covariance matrix. Q is also the key variable

for treating the maneuvering target problem with the "White

175
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ncise model with adjustable level" method. As it was ex-

plained in the corresponding chapter, variations in Q cause

proportional variations to the gain G(k), which weights the

correction factor in the equation:

x(kik) = x(kik-1) + G(k)[z(k) -c(k)x(k k-l)]

Larger values of Q tend to cause the state estimate to favr..cr

the observation.

The error covariance matrix and specifically some of

its elements (position and velocity error variance), were

very useful as indicators of the filter's performance.

In the case of the maneuvering target, the "White noise

model with adjustable level" method was very reliable and

comparable to the algorithms of References 9 and 10. Addi-

tionally, it is much simpler than the other two methods. The

only disadvantage was the greater value of the velocity r.m.s.

error. In the example presented, the difference was not

significant but it is estimated that it would increase in

cases where the target maneuvers more drastically (greater

accelerations).

The Monte Carlo simulation should be used to provide

statistical results for any stocahstic process which is

represented by pseudorandom numbers. This simulation is a

rigorous statistical procedure, to compare two or more

algor...thms.
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More specific conclusions concerning the examples presented

have already been provided in the corresponding analyses of

them.

It is suggested that a continuation of this research .-

should include the following:

a. Problem of maneuvering target which uses greater

acceleration driving the maneuvers. The "White noise

model with adjustable level" method should be applied and

the results in position and velocity r.m.s. errors should be

obtained.

b. Problem of multiple targets under various sicua'ions

(maneuvering, in clutter, etc.) . p

c. Problem of single and multiple maneuvering targets

in clutter. It is an interesting and important topic not

included in this paper due to lack of time.

d. Study the implementation of a Kalman Filter algorithm

using special purpose hardware.
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